ellippy.legendre.ellippiinc#
- ellippy.legendre.ellippiinc(n, phi, m)[source]#
Computes incomplete elliptic integral of the third kind Π(n; φ | m).
\[\Pi(n;\,\varphi\,|\,m) = \int_0^{\varphi} \frac{\mathrm{d}\theta}{\left(1 - n\,\sin^2\theta\right)\,\sqrt{1 - m\,\sin^2\theta}}\]- Parameters:
n (
ArrayLike) – Characteristic. n ∈ ℝ, n ≠ 1.phi (
ArrayLike) – Amplitude angle (φ) in radians. φ ∈ ℝ.m (
ArrayLike) – Elliptic parameter. m ∈ ℝ.
- Returns:
Scalar or numpy.ndarray broadcast from n, phi, and m. Returns the Cauchy principal value if n sin²φ > 1.
- Raises:
ValueError – If m sin²φ > 1, n sin²φ = 1, m ≥ 1 with φ not a multiple of π/2, or inputs contain NaN.
Graph
Special Cases
Π(0, n, m) = 0
Π(φ, 0, 0) = φ
Π(φ, 1, 0) = tan(φ)
Π(φ, 0, m) = F(φ, m)
Related Functions
Π(φ, 0, m) = F(φ, m)
With c = csc²φ: Π(φ, n, m) = (n/3) · RJ(c - 1, c - m, c, c - n) + F(φ, m)
With x = tan φ, p = 1 - n, and k_c² = 1 - m: Π(φ, n, m) = el3(x, k_c, p)
Notes
The elliptic modulus k is frequently used instead of m, where k² = m.
The characteristic n is sometimes expressed in term of α, where α² = n.
This function ellippiinc (of the package) is the circular or hyperbolic case of Π, since n and m are real. It is called circular if n·(n - m)·(n - 1) is negative and hyperbolic if it is positive.
References
Carlson, B. C. “DLMF: Chapter 19 Elliptic Integrals.” Accessed February 19, 2025. https://dlmf.nist.gov/19.
Maddock, John, Paul Bristow, Hubert Holin, and Xiaogang Zhang. “Boost Math Library: Special Functions - Elliptic Integrals.” Accessed April 17, 2025. https://www.boost.org/doc/libs/1_88_0/libs/math/doc/html/math_toolkit/ellint.html.
Wolfram Research. “EllipticPi.” 2022. https://reference.wolfram.com/language/ref/EllipticPi.html.
Pornsiriprasert, Sira. Ellip: Elliptic Integrals for Rust. V. 0.5.1. Released October 10, 2025. https://docs.rs/ellip/0.5.1/ellip/index.html.