ellippy.bulirsch.cel2#

ellippy.bulirsch.cel2(kc, a, b)[source]#

Computes Bulirsch complete integral of the second kind cel2.

\[\mathrm{cel2}(k_c, a, b) = \int_{0}^{\pi/2}\frac{a + b\,\tan^2\theta}{\sqrt{(1+\tan^2\theta)(1+k_c^2\tan^2\theta)}} \,\mathrm{d}\theta\]
Parameters:
  • kc (ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.

  • a (ArrayLike) – Real-valued coefficient.

  • b (ArrayLike) – Real-valued coefficient.

Returns:

Scalar or numpy.ndarray with the same shape as kc.

Raises:

ValueError – If kc = 0, more than one arguments are infinite, or inputs contain NaN.

Graph

Special Cases

  • cel2(kc, 0, 0) = 0

  • cel(kc, a, b) = 0 for |kc| = ∞

  • cel(kc, a, b) = sign(a) ∞ for |a| = ∞

  • cel(kc, a, b) = sign(b) ∞ for |b| = ∞

Related Functions

  • cel2(kc, a, b) = cel(kc, 1, a, b)

  • With kc² = 1 - m: E(m) = cel(kc, 1, 1, kc²) = cel2(kc, 1, kc²)

References