ellippy.bulirsch.cel2#
- ellippy.bulirsch.cel2(kc, a, b)[source]#
Computes Bulirsch complete integral of the second kind
cel2.\[\mathrm{cel2}(k_c, a, b) = \int_{0}^{\pi/2}\frac{a + b\,\tan^2\theta}{\sqrt{(1+\tan^2\theta)(1+k_c^2\tan^2\theta)}} \,\mathrm{d}\theta\]- Parameters:
kc (
ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.a (
ArrayLike) – Real-valued coefficient.b (
ArrayLike) – Real-valued coefficient.
- Returns:
Scalar or numpy.ndarray with the same shape as kc.
- Raises:
ValueError – If kc = 0, more than one arguments are infinite, or inputs contain NaN.
Graph
Special Cases
cel2(kc, 0, 0) = 0
cel(kc, a, b) = 0 for |kc| = ∞
cel(kc, a, b) = sign(a) ∞ for |a| = ∞
cel(kc, a, b) = sign(b) ∞ for |b| = ∞
Related Functions
cel2(kc, a, b) = cel(kc, 1, a, b)
With kc² = 1 - m: E(m) = cel(kc, 1, 1, kc²) = cel2(kc, 1, kc²)
References
Bulirsch, Roland. “Numerical Calculation of Elliptic Integrals and Elliptic Functions.” Numerische Mathematik 7, no. 1 (February 1, 1965): 78-90. https://doi.org/10.1007/BF01397975.
Carlson, B. C. “DLMF: Chapter 19 Elliptic Integrals.” Accessed February 19, 2025. https://dlmf.nist.gov/19.
Pornsiriprasert, Sira. Ellip: Elliptic Integrals for Rust. V. 0.5.1. Released October 10, 2025. https://docs.rs/ellip/0.5.1/ellip/index.html.