ellippy.legendre.ellippi#
- ellippy.legendre.ellippi(n, m)[source]#
Computes complete elliptic integral of the third kind Π(n | m).
\[\Pi(n\,|\,m) = \int_0^{\pi/2} \frac{\mathrm{d}\theta}{\left(1 - n\,\sin^2\theta\right)\,\sqrt{1 - m\,\sin^2\theta}}\]- Parameters:
n (
ArrayLike) – Characteristic. n ∈ ℝ, n ≠ 1.m (
ArrayLike) – Elliptic parameter. m ∈ ℝ, m ≤ 1.
- Returns:
Scalar or numpy.ndarray broadcast from n and m. Returns the Cauchy principal value if n > 1.
- Raises:
ValueError – If n = 1, m > 1, or inputs contain NaN.
Graph
Special Cases
Π(0, 0) = π/2
Π(0, m) = K(m)
Π(n, 0) = π/(2sqrt{1-n}) for n < 1
Π(n, 0) = 0 for n > 1
Π(n, m) = ∞ as n → 1-
Π(n, 1) = sign(1-n) · ∞
Π(±∞, m) = 0
Π(n, -∞) = 0
Related Functions
Π(n, m) = (n/3)·RJ(0, 1 - m, 1, 1 - n) + K(m)
Π(n, n) = E(n)/(1 - n) for n < 1
Π(n, m) = K(m) - E(m)/(1 - m) for n → 1+
Notes
The elliptic modulus k is frequently used instead of the parameter m, where k² = m.
The characteristic n is sometimes expressed in term of α, where α² = n.
References
Carlson, B. C. “DLMF: Chapter 19 Elliptic Integrals.” Accessed February 19, 2025. https://dlmf.nist.gov/19.
Maddock, John, Paul Bristow, Hubert Holin, and Xiaogang Zhang. “Boost Math Library: Special Functions - Elliptic Integrals.” Accessed April 17, 2025. https://www.boost.org/doc/libs/1_88_0/libs/math/doc/html/math_toolkit/ellint.html.
Pornsiriprasert, Sira. Ellip: Elliptic Integrals for Rust. V. 0.5.1. Released October 10, 2025. https://docs.rs/ellip/0.5.1/ellip/index.html.