ellippy.bulirsch.el3#

ellippy.bulirsch.el3(x, kc, p)[source]#

Computes Bulirsch incomplete integral of the third kind el3.

\[\mathrm{el3}(x, k_c, p) = \int_0^{\arctan x} \frac{\mathrm{d}\theta}{\left(\cos^2\theta + p\sin^2\theta\right)\,\sqrt{\cos^2\theta + k_c^2\sin^2\theta}}\]
Parameters:
  • x (ArrayLike) – Tangent of amplitude angle, x ∈ ℝ, x = tan(φ).

  • kc (ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.

  • p (ArrayLike) – Characteristic parameter. p ∈ ℝ, p ≠ 0.

Returns:

Scalar or numpy.ndarray broadcast from inputs. Returns the Cauchy principal value when 1 + px² < 0.

Raises:

ValueError – If kc = 0, 1 + px² = 0, |kc| > 1 for p < 0, or inputs contain NaN.

Graph

Special Cases

  • el3(0, kc, p) = 0

  • el3(∞, kc, p) = cel(kc, p, 1, 1) = Π(1-p, 1-kc²)

Related Functions

With x = tan φ, p = 1 - n and kc² = 1 - m:
  • Π(φ, n, m) = el3(x, kc, p)

  • el3(∞, kc, p) = cel(kc, p, 1, 1) = Π(n, m)

References