ellippy.legendre.ellipe#

ellippy.legendre.ellipe(m)[source]#

Computes complete elliptic integral of the second kind E(m).

\[E(m) = \int_0^{\pi/2} \sqrt{1 - m\,\sin^2\theta}\,\mathrm{d}\theta\]
Parameters:

m (ArrayLike) – Elliptic parameter. m ∈ ℝ, m ≤ 1.

Returns:

Scalar or numpy.ndarray with the same shape as m.

Raises:

ValueError – If m > 1 or inputs contain NaN.

Graph

Special Cases

  • E(0) = π/2

  • E(1) = 1

  • E(-∞) = ∞

Related Functions

  • E(m) = 2·RG(0, 1 - m, 1).

  • E(π/2, m) = E(m).

Notes

The elliptic modulus k is frequently used instead of the parameter m, where k² = m.

References