ellippy.bulirsch.el2#

ellippy.bulirsch.el2(x, kc, a, b)[source]#

Computes Bulirsch incomplete integral of the second kind el2.

\[\mathrm{el2}(x, k_c, a, b) = \int_{0}^{\arctan x}\frac{a + b\,\tan^2\theta}{\sqrt{(1+\tan^2\theta)(1+k_c^2\tan^2\theta)}} \,\mathrm{d}\theta\]
Parameters:
  • x (ArrayLike) – Tangent of amplitude angle, x ∈ ℝ, x = tan(φ).

  • kc (ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.

  • a (ArrayLike) – Real-valued coefficient.

  • b (ArrayLike) – Real-valued coefficient.

Returns:

Scalar or numpy.ndarray broadcast from inputs.

Raises:

ValueError – If kc = 0 or inputs contain NaN.

Graph

Special Cases

  • el2(0, kc, a, b) = 0

  • el2(x, kc, 0, 0) = 0

  • el2(∞, kc, a, b) = cel2(kc, a, b)

Related Functions

With x = tan φ and kc² = 1 - m,
  • F(φ, m) = el1(x, kc) = el2(x, kc, 1, 1)

  • E(φ, m) = el2(x, kc, 1, kc²)

  • el2(∞, kc, a, b) = cel2(kc, a, b)

References