ellippy.legendre.ellipd#

ellippy.legendre.ellipd(m)[source]#

Computes complete elliptic integral of Legendre’s type D(m).

\[D(m) = \int_0^{\pi/2} \frac{\sin^2\theta}{\sqrt{1 - m\,\sin^2\theta}}\,\mathrm{d}\theta\]
Parameters:

m (ArrayLike) – Elliptic parameter. m ∈ ℝ, m ≤ 1.

Returns:

Scalar or numpy.ndarray with the same shape as m.

Raises:

ValueError – If m > 1 or inputs contain NaN.

Graph

Special Cases

  • D(0) = π/4

  • D(1) = ∞

  • D(-∞) = 0

Related Functions

  • D(m) = (K(m) - E(m)) / m

  • D(m) = RD(0, 1 - m, 1) / 3

  • D(π/2, m) = D(m)

Notes

The elliptic modulus k is frequently used instead of m, where k² = m.

References