ellippy.legendre.ellipk#

ellippy.legendre.ellipk(m)[source]#

Computes complete elliptic integral of the first kind K(m).

\[K(m) = \int_0^{\pi/2} \frac{\mathrm{d}\theta}{\sqrt{1 - m\,\sin^2\theta}}\]
Parameters:

m (ArrayLike) – Elliptic parameter. m ∈ ℝ, m ≤ 1.

Returns:

Scalar or numpy.ndarray with the same shape as m.

Raises:

ValueError – If m > 1 or inputs contain NaN.

Graph

Special Cases

  • K(0) = π/2

  • K(1) = ∞

  • K(-∞) = 0

Related Functions

  • K(m) = RF(0, 1 - m, 1).

  • F(π/2, m) = K(m).

Notes

The elliptic modulus k is frequently used instead of the parameter m, where k² = m.

References