ellippy.legendre.ellipdinc#

ellippy.legendre.ellipdinc(phi, m)[source]#

Computes incomplete elliptic integral of Legendre’s type D(φ | m).

\[D(\varphi\,|\,m) = \int_0^{\varphi} \frac{\sin^2\theta}{\sqrt{1 - m\,\sin^2\theta}}\,\mathrm{d}\theta\]
Parameters:
  • phi (ArrayLike) – Amplitude angle (φ) in radians. φ ∈ ℝ.

  • m (ArrayLike) – Elliptic parameter. m ∈ ℝ.

Returns:

Scalar or numpy.ndarray broadcast from phi and m.

Raises:

ValueError – If m sin²φ > 1 or inputs contain NaN.

Graph

Special Cases

  • D(0, m) = 0

  • D(π/2, m) = D(m)

  • D(φ, -∞) = 0

  • D(±∞, m) = ±∞

Related Functions

With c = csc²φ,
  • D(φ, m) = (F(φ, m) - E(φ, m)) / m

  • D(φ, m) = RD(c - 1, c - m, c) / 3

Notes

The elliptic modulus k is frequently used instead of m, where k² = m.

References