ellippy.legendre.ellipf#

ellippy.legendre.ellipf(phi, m)[source]#

Computes incomplete elliptic integral of the first kind F(φ | m).

\[F(\varphi\,|\,m) = \int_0^{\varphi} \frac{\mathrm{d}\theta}{\sqrt{1 - m\,\sin^2\theta}}\]
Parameters:
  • phi (ArrayLike) – Amplitude angle (φ) in radians. φ ∈ ℝ.

  • m (ArrayLike) – Elliptic parameter. m ∈ ℝ.

Returns:

Scalar or numpy.ndarray broadcast from phi and m.

Raises:

ValueError – If m sin²φ > 1 or inputs contain NaN.

Graph

Special Cases

  • F(0, m) = 0

  • F(φ, 0) = φ

  • F(π/2, m) = K(m)

  • F(φ, -∞) = 0

  • F(φ, m) = sign(φ) ∞ for |φ| = ∞

Related Functions

  • With c = csc²φ: F(φ, m) = RF(c - 1, c - m, c)

Notes

The elliptic modulus k is frequently used instead of the parameter m, where k² = m.

References