ellippy.bulirsch.cel1#

ellippy.bulirsch.cel1(kc)[source]#

Computes Bulirsch complete integral of the first kind cel1.

\[\mathrm{cel1}(k_c) = \int_0^{\pi/2} \frac{\mathrm{d}\theta}{\sqrt{\cos^2\theta + k_c^2\sin^2\theta}}\]
Parameters:

kc (ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.

Returns:

Scalar or numpy.ndarray with the same shape as kc.

Raises:

ValueError – If kc = 0 or inputs contain NaN.

Graph

Special Cases

  • cel1(kc) = 0 for |kc| = ∞

Related Functions

  • With kc² = 1 - m: K(m) = cel(kc, 1, 1, 1) = cel1(kc)

References