ellippy.bulirsch.el1#

ellippy.bulirsch.el1(x, kc)[source]#

Computes Bulirsch incomplete integral of the first kind el1.

\[\mathrm{el1}(x, k_c) = \int_0^{\arctan x} \frac{\mathrm{d}\theta}{\sqrt{\cos^2\theta + k_c^2\sin^2\theta}}\]
Parameters:
  • x (ArrayLike) – Tangent of amplitude angle, x ∈ ℝ, x = tan(φ).

  • kc (ArrayLike) – Complementary modulus. kc ∈ ℝ, kc ≠ 0.

Returns:

Scalar or numpy.ndarray broadcast from inputs.

Raises:

ValueError – If kc = 0 or inputs contain NaN.

Graph

Special Cases

  • el1(0, kc) = 0

  • el1(∞, kc) = cel1(kc)

  • el1(x, ∞) = 0

Related Functions

With x = tan φ and kc² = 1 - m:
  • F(φ, m) = el1(x, kc) = el2(x, kc, 1, 1)

  • el1(∞, kc) = cel1(kc)

References