ellippy.carlson.elliprc#

ellippy.carlson.elliprc(x, y)[source]#

Computes Carlson degenerate integral RC.

\[R_C(x, y) = \tfrac{1}{2} \int_0^{\infty} \frac{\mathrm{d}t}{(t+y)\,\sqrt{t+x}}\]
Parameters:
  • x (ArrayLike) – Real-valued parameter.

  • y (ArrayLike) – Real-valued parameter.

Returns:

Scalar or numpy.ndarray broadcast from inputs. Returns the Cauchy principal value if y < 0.

Raises:

ValueError – If x < 0 or y = 0, or inputs contain NaN.

Graph

Special Cases

  • RC(x, x) = 1/sqrt(x)

  • RC(0, y) = π/(2*sqrt(y))

  • RC(x, y) = atan(sqrt(y-x)/x) / sqrt(y-x) for y > x

  • RC(x, y) = ln(sqrt(x) + sqrt(x-y)) / sqrt(x-y) for y < x

  • RC(x, y) = 0 for x = ∞ or y = ∞

Related Functions

  • RC(x, y) = RF(x, y, y)

Notes

RC is a degenerate case of the RF. It is an elementary function rather than an elliptic integral.

References